Math, asked by priyabmp8, 8 months ago

sin square a-sin square b+ sin square c=2sinacosbsinc​

Answers

Answered by vastikaarya123
1

LHS=sin²a+sin²b-sin²c

Applying addition formula

sin (A+B)Sin(A-B)=Sin²Α-Sin²Β

Sin²a+Sin²b-Sin²c=Sin²a+Sin(b+c)Sin(b-c)

=Sin²a+Sin(π−a)Sin (b-c)

= Sin²a+Sin a Sin(b-c)

= Sin a{Sin a+Sin (b-c)}

= Sin a[2Sin {(a+b-c)/2}Cos{(a-b+c)/2}]

= 2Sin a[Sin {(π/2)-c} Cos{(π/2)-b}]

= 2Sin aCosc Sin b

Similar questions