sin square alpha plus sin square beta = 1
Answers
Answered by
0
Answer:
Step-by-step explanation:
cos4αcos2β+sin4αsin2β=1
⇒cos4αsin2β+sin4αcos2β=cos2βsin2β
⇒cos4α(1−cos2β)+sin4αcos2β=cos2β(1−cos2β)
⇒cos4α−cos4αcos2β+sin4αcos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+(1−cos2α)2cos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+(1+cos4α−2cos2α)2cos2β=cos2β−cos4β
⇒cos4α−cos4αcos2β+cos2β+cos2βcos4α−2cos2αcos2β=cos2β−cos4β
⇒2cos4α=2cos2αcos2β
⇒cos2α=cos2β→(1)
⇒1−sin2α=1−sin2β
⇒sin2α=sin2β→(2)
Now,
(i)L.H.S.=sin4α+sin4β=(sin2α−sinβ)2+2sin2αsin2β
As, sin2α=sin2β,above expression becomes,
=0+2sin2αsin2β=2sin2αsin2β=R.H.S.
(ii)L.H.S.=cos4βcos2α+sin4βsin2α
From (1),
=cos4αcos2α+sin4αsin2α
=cosα+sin2α=1=R.H.S.=
Similar questions