sin square minus 160 degree upon sin square 70degree + sin 180 - theta upon sin theta is equals to sec square 20 degree
Answers
Answer:
Proved.
Step-by-step explanation:
We have to prove that,
...... (1)
Now the left hand side of equatio (1) =
=
{Since }
=
=
{ Where we know that, and }
= { Apply the formula, }
=
= Right hand side of equation (1)
Hence, proved.
Answer:
Answer:
Proved.
Step-by-step explanation:
We have to prove that,
\frac{Sin^{2}(-160)}{Sin^{2}70 } +\frac{Sin(180-\alpha) }{Sin\alpha }=Sec^{2} 20
Sin
2
70
Sin
2
(−160)
+
Sinα
Sin(180−α)
=Sec
2
20 ...... (1)
Now the left hand side of equatio (1) = \frac{Sin^{2}(-160)}{Sin^{2}70 } +\frac{Sin(180-\alpha) }{Sin\alpha }
Sin
2
70
Sin
2
(−160)
+
Sinα
Sin(180−α)
= \frac{Sin^{2}(160)}{Sin^{2}(90-20) } +\frac{Sin(180-\alpha) }{Sin\alpha }
Sin
2
(90−20)
Sin
2
(160)
+
Sinα
Sin(180−α)
{Since Sin^{2} (-\alpha )=(-Sin\alpha) ^{2}= Sin^{2}\alphaSin
2
(−α)=(−Sinα)
2
=Sin
2
α }
= \frac{Sin^{2}(180-20) }{Cos^{2}20 }+\frac{Sin\alpha }{Sin\alpha }
Cos
2
20
Sin
2
(180−20)
+
Sinα
Sinα
= \frac{Sin^{2}20 }{Cos^{2}20 } +1
Cos
2
20
Sin
2
20
+1
{ Where we know that, Sin(90-\alpha )=Cos\alphaSin(90−α)=Cosα and Sin(180-\alpha )=Sin\alphaSin(180−α)=Sinα }
= tan^{2} 20+1tan
2
20+1 { Apply the formula, Sec^{2} \alpha -tan^{2} \alpha =1Sec
2
α−tan
2
α=1 }
= Sec^{2} 20Sec
2
20
= Right hand side of equation (1)
Hence, proved.