Sin square theta divided by cos square theta + cos square theta divided by sin square theta = secant square theta - cosecant square theta - 2
Answers
Answered by
0
hey view the following attachment for solution
Attachments:
Answered by
1
Answer:
Sin²a/Cos²a + Cos²a/Sin²a = Cosec²a + Sec²a - 2
Step-by-step explanation:
Using a instead of thetha
Sin²a/Cos²a + Cos²a/Sin²a
= (Sin^4a + Cos^4a)/(Cos²a.Sin²a)
as we know x² + y² = ( x+y)² - 2xy
here x = Sin²a & y = Cos²a
= ( (Sin²a + Cos²a)² - 2Sin²a.Cos²a)/(Cos²a.Sin²a)
= (1 - 2Sin²a.Cos²a)/(Cos²a.Sin²a)
= 1/(Cos²a.Sin²a) - 2
1 = Cos²a + Sin²a
= (Cos²a + Sin²a)/(Cos²a.Sin²a) - 2
= Cos²a/(Cos²a.Sin²a) + Sin²a/(Cos²a.Sin²a) - 2
= 1/Sin²a + 1/Cos²a - 2
= Cosec²a + Sec²a - 2
= Sec²a + Cosec²a - 2
looks like in question - Cosec² is by mistake
Similar questions