Math, asked by deepanshisharma6081, 1 month ago

Sin square theta plus 1 by 1 plus tan square theta

Answers

Answered by Anonymous
16

As we know that,

 \purple{ \tt \bullet \qquad  sin^{2}  \theta + cos^{2}  \theta = 1}

 \purple{ \tt \bullet  \qquad tan^{2}  \theta =  \dfrac{ {sin}^{2}  \theta}{  {cos}^{2}  \theta} }

So,

 \tt\Longrightarrow \dfrac{sin^2\theta+1}{1+tan^2\theta}

 \tt\Longrightarrow \dfrac{sin^2\theta+1}{1+ \frac{ {sin}^{2}  \theta}{ {cos}^{2} \theta } }

 \tt\Longrightarrow \dfrac{sin^2\theta+1}{ \frac{  {cos}^{2} \theta +  {sin}^{2}  \theta}{ {cos}^{2} \theta } }

 \tt\Longrightarrow \dfrac{sin^2\theta+1}{ \frac{1}{ {cos}^{2} \theta } }

 \tt\Longrightarrow (1 + sin^2\theta) {cos}^{2}  \theta

 \tt\Longrightarrow (1 + sin^2\theta) (1 - {sin}^{2}  \theta)

 \tt\Longrightarrow (1 - {sin}^{4}  \theta)

 \tt\Longrightarrow ( {cos}^{4}  \theta)

 \green{ \tt\Longrightarrow  {cos}^{4}  \theta}

Similar questions