Math, asked by aaravchaudhary6, 1 year ago

sin square theta + sec square theta is equal to sin square theta into cos square theta + 1 upon cos squared theta​

Answers

Answered by Anonymous
9

\huge\mathcal{Hey\:mate}

To prove =

 { \sin( \theta) }^{2}  +  { \sec( \theta) }^{2}  =  \frac{ { \sin( \theta) }^{2} . { \cos( \theta) }^{2}  + 1}{ { \cos( \theta) }^{2} }  \\

We can solve it by both LHS and RHS

Answer refers to the attachment

Attachments:
Answered by Anonymous
1

Given

 { \sin( \alpha ) }^{2}  +  { \sec( \alpha ) }^{2}  =  \frac{ { \sin( \alpha ) }^{2}  { \cos( \alpha ) }^{2} + 1 }{ { \cos( \alpha ) }^{2} }

Taking LHS

 { \sin( \alpha ) }^{2}  +  { \sec( \alpha ) }^{2}  \\  { \sin( \alpha ) }^{2}  +   \frac{1}{ { \cos( \alpha ) }^{2} }  \\  \frac{ { \sin( \alpha ) }^{2} { \cos( \alpha ) }^{2} + 1  }{ { \cos( \alpha ) }^{2} }

Hence LHS =RHS

proved

Similar questions