Math, asked by atharvnandagave, 11 months ago

sin square x + cos square 30 =5÷4.Find value of x if x<0<90​

Answers

Answered by samarsparsh18
18

Answer:

Sin^2x°+cos^2 30°=5/4

Sin^2x°+{(root3)/2}^2=5/4

Sin^2x°+3/4=5/4

Sin^2x°=5/4-3/4

Sin^2x°=2/4

Sin^2x°=1/2

Sinx°=root(1/2)

Sinx°=1/root2

Sinx°=sin45°[sin45=1/root2]

x°=45°

Mark as brainlist

Hope u like it

Answered by harendrachoubay
35

The value of ∠ x is equal to 45°.

Step-by-step explanation:

We have,

\sin^2 x+\cos^2 30 =\dfrac{5}{4}

To find, the value of ∠ x = ?

\sin^2 x+\cos^2 30 =\dfrac{5}{4}

\sin^2 x+(\dfrac{\sqrt{3} }{2})^2=\dfrac{5}{4}

\sin^2 x+\dfrac{3}{4} =\dfrac{5}{4}

\sin^2 x=\dfrac{5}{4}-\dfrac{3}{4}

\sin^2 x=\dfrac{5-3}{4}=\dfrac{2}{4}

\sin^2 x=\dfrac{1}{2}

\sin^2 x=(\dfrac{1}{\sqrt{2} })^2

\sin^2 x=\sin^2 45

⇒ ∠ x  = 45°

The value of ∠ x = 45°

Thus, the value of ∠ x is equal to 45°.

Similar questions