sin square5° + sin square6° + sin square7° +.........+ sin square 85°
(a) 10.5
(b) 40.5
(c) 1
(d) 38
Answers
Solution :-
Here , we need to find the value of sin²5° + sin²6° + sin²7° + …… + sin²85°
Let's take AP :- 5° , 6° , …… 85°
Firstly finding total no. of terms using ,
• tn = a + ( n - 1 ) d
Here ,
- tn :- last term = 85°
- a :- first term = 5°
- n :- no. of terms = ?
- d :- common difference = t2 - t1 = 6° - 5° = 1°
→ 85° = 5 + ( n - 1 ) ( 1 )
→ 85° - 5° = n - 1
→ 80° + 1 ° = n
→ No. of terms = 81
Here , sin²85° can be written as sin²(90° - 5°) . So , as we know that , sin²(90° - A) = cos²A → sin²(90° - 5°) = cos²5°
• AP :-
⇒ sin²5° + sin²6° + …. + cos²6° + cos²5°
Here the middle term is ,
⇒ sin²5° + sin²6° + ….. cos²45° ….. + cos²6° + cos²5°
⇒ sin²5° + cos²5° + sin²6° + cos²6° …… cos²45° + sin²84° + cos²84° + sin²84° + sin²84°
So , as we know that sin²A + cos²A = 1 similarly ,
⇒ 1 + 1 + 1 + …… cos²45° …… + 1 + 1 + 1
There are 81 terms so by removing the term cos45° = 1/2 there will be 40 pairs of sin²A + cos²A . So ,
⇒ 40 ( 1 ) + cos²45°
⇒ 40 + ( 1/√2 )² [ °.° cos45° = 1/√2 ]
⇒ 40 + ½
⇒ 40.5
Hence , sin²5° + sin²6° + sin²7° + …… + sin²85° = 40.5 . So , option ( b ) is your answer.