Math, asked by safina90, 1 year ago

(sin teta - cos teta)^2-(sin teta +cos teta)^2​

Answers

Answered by ihrishi
2

Answer:

( {sin \theta \:  - cos \theta)}^{2}  - ( {sin \theta \:   +  cos \theta)}^{2} \\  {sin}^{2}  \theta \:  +  {cos}^{2}  \theta  - 2sin \theta \: cos \theta \:  - ({sin}^{2}  \theta \:  +  {cos}^{2}  \theta   +  2sin \theta \: cos \theta) \\ {sin}^{2}  \theta \:  +  {cos}^{2}  \theta  - 2sin \theta \: cos \theta - {sin}^{2}  \theta \:   -   {cos}^{2}  \theta  - 2sin \theta \: cos \theta \\  =  - 4sin \theta \: cos \theta \\ =   - 2 \times 2 sin \theta \: cos \theta  \\  =  - 2sin2 \theta

Please mark it as brainliest.

Similar questions