Math, asked by dharsnp514, 1 year ago

Sin teta minus cos teta plis 1 divided by sin teta plus cos teta minus 1 equals 1 divided by sec teta minus tan teta

Answers

Answered by Aryanmalewar
1
pls ask question by clicking a photo of it. it can't be understood....
Answered by nitthesh7
0

sinΘ - cosΘ + 1 

_____________     =  1 /secΘ - tanΘ

 

sinΘ + cosΘ - 1  

 

 

Taking LHS

 

     sinΘ - cosΘ + 1 

=   _____________

 

    (sinΘ + cosΘ) - 1

 

   sinΘ - cosΘ + 1              (sinΘ + cosΘ) + 1 

= _____________  ×       ________________

 

  (sinΘ + cosΘ) - 1             (sinΘ + cosΘ) + 1 

 

(Taking Conjugate)

 

   (sinΘ - cosΘ + 1)(sinΘ + cosΘ + 1)  

= _____________________________

 

   (sinΘ + cosΘ - 1)(sinΘ + cosΘ + 1)

 

    sin²Θ + sinΘcosΘ + sinΘ - sinΘcosΘ - cos²Θ - cosΘ + sinΘ + cosΘ + 1

= ________________________________________________________

 

    sin²Θ + sinΘcosΘ + sinΘ + sinΘcosΘ + cos²Θ + cosΘ - sinΘ - cosΘ - 1

 

Cancelling out,

 

       sin²Θ + 2sinΘ + (1 - cos²Θ)

=   __________________________

 

   (sin²Θ + cos²Θ) - 1 + 2sinΘcosΘ

 

    sin²Θ + 2sinΘ + sin²Θ

=   ___________________                                       (By sin²Θ + cos²Θ =1)

 

      1 - 1 + 2sinΘcosΘ

 

    2sin²Θ + 2sinΘ

=  _____________

 

      2sinΘcosΘ

   

    2sinΘ(sinΘ+1)

= _____________

 

       2sinΘ(cosΘ)

 

    sinΘ + 1

= ________

 

      cosΘ

 

= tanΘ + secΘ                      ...............(1)

 

 

Taking RHS

 

         1

= ________

 

   tanΘ - secΘ

 

          1              tanΘ + secΘ

= ________ ×   __________

 

   tanΘ - secΘ    tanΘ + secΘ

 

(Taking Conjugate)

 

        tanΘ + secΘ

=   _____________

 

       tan²Θ - sec²Θ

 

= tanΘ + secΘ                 ................(2)             (By sec²Θ = 1 + tan²Θ)

 

From (1) and (2)

 

We get,   LHS = RHS

 

 

HENCE PROVED

 

 

☺ Hope this Helps ☺

 


Similar questions