Math, asked by mohnishkrishna2005, 11 months ago

sin tetha ― 2sin^3 tetha/2cos^3tetha ― costetha = tan tetha how​

Answers

Answered by Anonymous
52

Question :

To prove that

 \sf \dfrac{ \sin \theta - 2 \sin {}^{3} \theta }{2 \cos {}^{3}  \theta - 1}  =  \tan \theta

Formula's Used:

 \sf1) \cos2 \theta = 2 \cos {}^{2}  \theta - 1

2) \cos2 \theta = 1 - 2 \sin {}^{2}  \theta

 \sf3) \sin2 \theta =  2 \sin \theta \cos \theta

 \sf4) \cos2 \theta =  \cos {}^{2} \theta -  \sin {}^{2} \theta

Solution :

We have to prove that

 \sf \dfrac{ \sin \theta - 2 \sin {}^{3} \theta }{2 \cos {}^{3} \theta -  \cos \theta } =  \tan \theta

LHS  \sf=\dfrac{ \sin \theta - 2 \sin {}^{3} \theta }{2 \cos {}^{3} \theta -  \cos \theta }

 \sf =  \dfrac{ \sin \theta(1 - 2 \sin {}^{2}  \theta)}{ \cos  \theta(2 \cos  {}^{2} \theta - 1)}

 \sf =  \tan \theta \times  \dfrac{1 - 2 \sin {}^{2}  \theta}{2 \cos {}^{2} \theta - 1 }

Use Formula cos2θ=2cos²θ-1 or 1-2sin²θ

  \sf=  \tan \theta \times  \dfrac{ \cos2 \theta}{ \cos2 \theta}

 \sf =  \tan \theta

RHS =tanθ

⇒LHS=RHS

Hence proved

Answered by amitkumar44481
7

To Prove :

 \tt\dagger \:  \:  \:  \:  \:   \dfrac{ sin \theta - 2 {sin}^{ 3}  \theta}{2{cos }^{3} \theta - 1 }  = tan \theta.

Solution :

Taking LHS,

 \tt\longmapsto \dfrac{ sin \theta - 2 {sin}^{ 3}  \theta}{2{cos }^{3} \theta - 1 }

\tt\longmapsto \dfrac{ sin \theta (1- 2 {sin}^{ 2}  \theta)}{cos \theta(2{cos }^{2} \theta - 1) }

\tt\longmapsto \dfrac{ sin \theta [1- 2(1 -  {cos}^{ 2}  \theta)]}{cos \theta(2{cos }^{2} \theta - 1) }

\tt\longmapsto \dfrac{ sin \theta (1- 2 + 2 {cos}^{ 2}  \theta)}{cos \theta(2{cos }^{2} \theta - 1) }

\tt\longmapsto \dfrac{ sin \theta (2 {cos}^{2} \theta + 1 - 2) }{cos \theta(2{cos }^{2} \theta - 1) }

\tt\longmapsto \dfrac{ sin \theta \cancel{(2 {cos}^{2} \theta  - 1 ) }}{cos \theta\cancel{(2{cos }^{2} \theta - 1) }}

\tt\longmapsto \dfrac{ sin \theta }{cos \theta}

\tt\longmapsto tan \theta.

Hance LHS = RHS.

\rule{200}3

\boxed{\begin{minipage}{6 cm}Fundamental Trigonometric Identities \\ \\ $\sin^2\theta + \cos^2\theta=1 \\ \\1+\tan^2\theta = \sec^2\theta \\ \\ \sin^2\theta = 1 - \cos^2\theta \\ \\1+\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

Similar questions