Math, asked by jutikap8601, 11 months ago

Sin theat =7/25 find the value of costheat and tan theat

Answers

Answered by vinay200602
0

Step-by-step explanation:

sin theta = perpendicular/hypotenuse

= 7/25

base will be 24 by Pythagoras theorem

cos theta = base/hypotenuse

= 24/25

tan theta= sin theta/ cos theta

= 7/25/24/25

= 7/24

Answered by Brâiñlynêha
5

\huge\bold{\red{SOLUTION:-}}

\sf\bullet sin\theta=\dfrac{7}{25}\\ \\ \sf\bullet cos\theta=?\:\:\:and\: tan\theta=?

\boxed{\sf{sin\theta=\dfrac{Perpendicular(P)}{Height(H)}}}

Now by Pythagoras

\underline{\sf{Hypotenuse {}^{2}=Base{}^{2}+perpendicular {}^{2}}}

\sf\implies (25){}^{2}=Base{}^{2}+(7){}^{2}\\ \\ \sf\implies 625=Base{}^{2}+49\\ \\ \sf\implies 625-49=Base{}^{2}\\ \\ \sf\implies 576=Base{}^{2}\\ \\ \sf\implies Base=\sqrt{576}\\ \\ \sf\implies Base(B)=24

Now we have to find

\boxed{\sf{cos\theta=\dfrac{Base}{Height}}}

\sf\implies cos\theta=\dfrac{24}{25}

\boxed{\sf{tan\theta=\dfrac{Perpendicular}{Base}}}

\sf\implies tan\theta=\dfrac{7}{24}

So

\boxed{\sf{sin\theta=\dfrac{7}{25} \:\:,cos\theta=\dfrac{24}{25}\:\:and\:tan\theta=\dfrac{7}{24}}}

Similar questions