Math, asked by adarshchaubey8734, 1 year ago

Sin theeta plus cos theeta is equal to p and sec theeta plus cosec theeta is equal to q then prove q int p sq. Minus1 is equal to 2p

Answers

Answered by siddharth052003
5

Given : sin θ + cos θ = p

            sec θ + cosec θ = q

To Prove : q × (p² - 1) = 2p

Proof : We solve RHS and LHS separately.

RHS = 2p

        = 2 ( sin θ + cos θ )

LHS = q × (p² - 1)

       = (sec θ + cosec θ) × [ (sin θ + cos θ)² - 1 ]

       = (sec θ + cosec θ) × [ (sin² θ + cos² θ + 2 sinθ cosθ) - 1 ]

       = (sec θ + cosec θ) × ( 1 + 2 sinθ cosθ - 1 )

       = (sec θ + cosec θ) × ( 2 sinθ cosθ )

       = [ ( 1/ cos θ ) + ( 1/ sin θ ) ] × ( 2 sinθ cos θ )

       = 2 sinθ + 2 cosθ

       = 2 ( sin θ + cos θ )


LHS = RHS

Hence, proved

Answered by sohanafajil83
1

Answer:

L.H.S

q(p^2-1)

= (sectheeta+cosectheeta)×[(sintheeta+costheeta)^2-1]

= (sectheeta+cosectheeta)×[(sin^2theeta+2sintheeta.costheeta+cos^2theeta)-1]

= (sectheeta+cosectheeta)×(1+2sintheeta.vostheeta-1)

= (sectheeta+cosectheeta)+2sintheeta.costheeta)

=(1/costheeta+1/sintheeta)×(2sintheeta.costheeta)

=2sintheeta+2costheeta

=2(sintheeta+costheeta)

(sintheeta+costheeta=p)

=2p is answer

Similar questions