Math, asked by dhruvkrisha, 8 months ago

sin theta/ 1+ cos theta + 1+cos theta / sin theta = 2 cosec theta

Answers

Answered by harshitkkH
2

Answer:

I hope this answers is helpful for you

Please mark as a brainliest

Attachments:
Answered by SarcasticL0ve
6

To Prove:-

  • \sf \dfrac{sin\theta}{1 + cos\theta} + \dfrac{1 + cos\theta}{sin\theta} = 2cosec\theta}

SoluTion:-

\small\sf\;\;\star\;{\underline{Taking\;L.H.S:-}}

\sf\maltese\; \dfrac{sin\theta}{1 + cos\theta} + \dfrac{1 + cos\theta}{sin\theta} \\ \\ \\ :\implies\sf \dfrac{sin\theta \times sin\theta + (1 + cos\theta)(1 + cos\theta)}{sin\theta(1 + cos\theta)} \\ \\ \\ :\implies\sf \dfrac{sin^2\theta + (1 + cos\theta)^2}{sin\theta(1 + cos\theta)} \\ \\ \\ :\implies\sf \dfrac{sin^2\theta + (1)^2 + 2 \times cos\theta \times 1 + (cos\theta)^2} \\ \\ \\ :\implies\sf \dfrac{sin^2\theta + (1)^2 + 2 \times cos\theta \times 1 + (cos\theta)^2}{sin\theta(1 + cos\theta)} \\ \\ \\ :\implies\sf \dfrac{sin^2\theta + 1 + 2cos\theta + cos^2\theta}{sin\theta(1 + cos\theta)}\qquad\bigg\lgroup\bf sin^2\theta + cos^2\theta = 1\bigg\rgroup

\\ \\ \\ :\implies\sf \dfrac{1 + 1 + 2cos\theta}{sin\theta(1 + cos\theta)} \\ \\ \\ :\implies\sf \dfrac{2 + 2cos\theta}{sin\theta(1 + cos\theta)}\qquad\bigg\lgroup\bf Taking\;2\;common \bigg\rgroup \\ \\ \\ :\implies\sf \dfrac{2 \cancel{(1 + cos\theta)}}{sin\theta \cancel{(1 + cos\theta)}} \\ \\ \\ :\implies\sf \dfrac{2}{sin\theta} \\ \\ \\ :\implies{\underline{\boxed{\bf{\blue{2cosec\theta}}}}}\;\;\bigstar

\dag\;{\underline{\underline{\bf{\pink{Hence\;ProvEd!!}}}}}

━━━━━━━━━━━━━━━━━━━━

\boxed{\begin{minipage}{7 cm} Fundamental Trigonometric Identities \\ \\ $\sin^2\theta + \cos^2\theta=1 \\ \\ 1+\tan^2\theta = \sec^2\theta \\ \\ 1+\cot^2\theta = \text{cosec}^2 \, \theta$\end{minipage}}

Similar questions