sin theta/1- cos theta = cosec theta + cot theta
Answers
Answered by
7
Answer
cosecA(1+cosA)(cosecA–cotA) = 1
On taking LHS
cosecA(1+cosA)(cosecA–cotA)
=> cosecA(1+cosA)(1/sinA–cosA/sinA)
=> cosecA(1+cosA)(1–cosA)/sinA
=> cosecA/sinA(1+cosA)(1–cosA)
=> 1/sin²A (1–cos²A)
{ Because cosecA = 1/sinA and a²–b²=(a+b)(a–b) }
=> sin²A/sin²A
=> 1 = R.H.S. { Because 1–cos²A = sin²A }
Answered by
1
Answer:
(sin theta )(1+cos theta)/(1-cos theta)(1+costheta)
(sin theta +sin theta cos theta)/(1-cos²theta)
(sin theta+sin theta cos theta) /(sin²theta)
(sin theta/sin²theta)+(sin theta cos theta /sin²theta)
cosec theta cot theta
Step-by-step explanation:
rationalising denominator by (1+cos theta)then proceed as follows
Similar questions