Math, asked by Mridul1388, 1 year ago

Sin theta/ 1-cos theta+tan theta/1+cos theta = cot theta+sec theta×cosec theta

Answers

Answered by Anonymous
8

Question:

To Prove :

{\sf{ {\dfrac{sin \theta}{1 - cos \theta}} + {\dfrac{tan \theta}{1 + cos \theta}} = cot \theta + sec \theta cosec \theta}}

Step-by-step explanation:

L.H.S. = {\sf{ {\dfrac{sin \theta}{1 - cos \theta}} + {\dfrac{tan \theta}{1 + cos \theta}}}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{(1 + cos \theta)(1 - cos \theta)}}}}

_______________________________

{\boxed{\tt{Identity \ : \ (a + b)(a - b) = a^2 - b^2}}}

{\tt{Here, \ a = 1, \ b = cos \theta}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{(1)^2 - (cos \theta)^2}}}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{1 - cos^2 \theta}}}}

_______________________________

{\boxed{\tt{Identity \ : \ sin^2 \theta + cos^2 \theta = 1}}}

{\tt{From \ this, \ we \ get \ [ 1 - cos^2 \theta = sin^2 \theta ]}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta (1 + cos \theta ) + tan \theta (1 - cos \theta )}{sin^2 \theta}}}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta + sin \theta cos \theta + tan \theta - tan \theta cos \theta}{sin^2 \theta}}}}

_______________________________

{\boxed{\tt{Identity \ : \ tan \theta = {\dfrac{sin \theta}{cos \theta}}}}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta + sin \theta cos \theta + tan \theta - {\dfrac{sin \theta}{cos \theta}} \times cos \theta}{sin^2 \theta}}}}

_______________________________

\implies{\sf{ {\dfrac{ sin \theta + sin \theta cos \theta + tan \theta - sin \theta}{sin^2 \theta}}}}

_______________________________

Rearranging the terms in the numerator.

\implies{\sf{ {\dfrac{ sin \theta - sin \theta + sin \theta cos \theta + tan \theta}{sin^2 \theta}}}}

_______________________________

\implies{\sf{ {\dfrac{sin \theta cos \theta + tan \theta}{sin^2 \theta}}}}

_______________________________

{\boxed{\tt{Identity \ : \ tan \theta = {\dfrac{sin \theta}{cos \theta}}}}}

_______________________________

\implies{\sf{ {\dfrac{sin \theta cos \theta + {\dfrac{sin \theta}{cos \theta}}}{sin^2 \theta}}}}

_______________________________

\implies{\sf{ {\dfrac{ {\dfrac{sin \theta cos \theta (cos \theta) + sin \theta}{cos \theta}} }{ sin^2 \theta}} }}

_______________________________

\implies{\sf{ {\dfrac{ {\dfrac{sin \theta cos^2 \theta + sin \theta}{cos \theta}} }{ sin^2 \theta}} }}

_______________________________

\implies{\sf{ {\dfrac{sin \theta cos^2 \theta + sin \theta }{ (cos \theta)(sin^2 \theta)}}}}

_______________________________

\implies{\sf{ {\dfrac{sin \theta cos^2 \theta + sin \theta }{cos \theta . sin^2 \theta}}}}

_______________________________

Taking common terms out from numerator and denominator.

\implies{\sf{ {\dfrac{sin \theta (cos^2 \theta + 1) }{sin \theta (cos \theta . sin \theta)}}}}

_______________________________

\implies{\sf{ {\dfrac{cos^2 \theta + 1}{cos \theta . sin \theta}}}}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{cos^2 \theta}{cos \theta sin \theta}} + {\dfrac{1}{cos \theta sin \theta}} }}

_______________________________

\implies{\sf{ {\dfrac{cos \theta}{sin \theta}} + {\dfrac{1}{cos \theta sin \theta}} }}

_______________________________

We can write this as :

\implies{\sf{ {\dfrac{cos \theta}{sin \theta}} + {\dfrac{1}{cos \theta}} \times {\dfrac{1}{sin \theta}} }}

_______________________________

{\boxed{\tt{Identity \ : \ {\dfrac{cos \theta}{sin \theta}} = cot \theta}}}

{\boxed{\tt{Identity \ : \ {\dfrac{1}{cos \theta}} = sec \theta}}}

{\boxed{\tt{Identity \ : \ {\dfrac{1}{sin \theta}} = cosec \theta}}}

_______________________________

\implies{\sf{ cot \theta + sec \theta cosec \theta}}

_______________________________

= R.H.S.

Hence, proved !!

Similar questions