sin theta/1-cos theta + tan theta / 1+cos theta = sec theta.cosec theta + cot theta
Answers
Answered by
3
solution:
\frac{sin\theta }{1-cos\theta}+\frac{tan\theta}{1+cos\theta}
=\frac{sin\theta(1+cos\theta)+tan\theta(1-cos\theta)}{1-cos^2\theta}
=\frac{sin\theta+sin\theta x cos\theta=tan\theta -than\theta xcos\theta}{sin^2\theta}
=\frac{1}{sin\theta}+\frac{cos\theta}{sin\theta}+\frac{1}{cos\theta.sin\theta}-\frac{1}{sin\theta}
=\frac{cos\theta}{sin\theta}+\frac{1}{cos\theta.sin\theta}
=cot\theta+sec\theta.cosec\theta
Answered by
3
sinθ/1-cosθ+tanθ/1+cosθ =
secθ ×.cosecθ +cotθ
Attachments:
Similar questions