Math, asked by lomash1816, 11 months ago

Sin theta/1+cot theta + 1+costheta/sintheta=2cosec thta

Answers

Answered by MaheswariS
0

\frac{sin\theta}{1+cos\theta}+\frac{1+cos\theta}{sin\theta}

=\frac{sin^2\theta+(1+cos\theta)^2}{(1+cos\theta)sin\theta}

Using

\boxed{\bf\,(a+b)^2=a^2+b^2+2ab}

=\frac{sin^2\theta+1^2+cos^2\theta+2\,cos\theta}{(1+cos\theta)sin\theta}

=\frac{sin^2\theta+cos^2\theta+,1+2\,cos\theta}{(1+cos\theta)sin\theta}

Using,

\boxed{\bf\,sin^2A+cos^2A=1}

=\frac{1+1+2\,cos\theta}{(1+cos\theta)sin\theta}

=\frac{2+2\,cos\theta}{(1+cos\theta)sin\theta}

=\frac{2(1+cos\theta)}{(1+cos\theta)sin\theta}

=\frac{2}{sin\theta}

=2(\frac{1}{sin\theta})

=2\:cosec\theta

\implies\boxed{\bf\frac{sin\theta}{1+cos\theta}+\frac{1+cos\theta}{sin\theta}=2\:cosec\theta}

Similar questions