sin theta 1 + sin square theta is equal to cos square theta then prove that cos power 6 theta minus 4 cos power 4 theta + 8 cos square theta is equal to 4
Answers
Answered by
3
══════════════
EXPLAINATION ➣
Given−
cosθ+cos
2
θ=1
Toprove−
sin
12
θ+3sin
10
θ+3sin
8
θ+sin
6
θ+2sin
4
θ+2sin
2
θ−2=1
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
→cos θ+cos²θ=1
⇒cos θ=1−cos²θ
⇒cos θ= sin²θ
Taking LHS,
⇒(sin⁴θ)3+3 (sin⁴θ)2(sin²θ) +3 (sin⁴θ) (sin²θ)2+(sin²θ)3+2(sin⁴θ+sin²θ)−2(sin⁴θ+sin²θ)3+2(sin⁴θ+sin²θ)−2
➣ Note--- [(a+b)³=a³+b³+3a²b+3ab²]
⇒[(sin²θ)2+sin²θ]3+2[(sin²θ)2+sin²θ]−2
[ sin²θ= cosθ] given
⇒(cos²θ+sin²θ)3+2(cos²θ+sin²θ)−2
[sin²θ+cos²θ = 1]
⇒1³+2−2
⇒1 = 1
LHS=RHS Hence Proved.
━━━━━━━━━━
|ʙᴇ ʙʀᴀɪɴʟʏ|
Answered by
1
Answer:
Hope it helps you.Please verify
Attachments:
Similar questions