Math, asked by Aniket6945, 7 months ago

Sin theta(1+tan theta) +cos(1+cosec theta) =sec theta+cosec theta

Answers

Answered by sonisiddharth751
3

there is fault in this question .

correct question :- Sin theta(1+tan theta) +cos(1+cot theta) =sec theta+cosec theta

basic concept used :-

  • firstly we have to convert LHS in the form of sinθ and cosθ .

 \implies \:  \sf \:   \tan \theta \:  =  \dfrac{ \sin \theta}{ \cos \theta }  \\  \\  \implies \:  \sf \:  \cot \theta\:  =  \frac{ \cos \theta}{ \sin \theta}  \\  \\ \implies \:  \sf \:  \frac{1}{ \sin\theta}  =  \cosec \theta \\  \\   \implies \:  \sf \: \frac{1}{ \cos\theta}  =  \sec \theta \\  \\\implies \:  \sf \:  { \sin}^{2}  \theta \:  +  {cos}^{2}  \theta \:  = 1 \\  \\

Solution :-

L.H.S

 \sf \: sin \theta \: (1 +  tan \theta) +  cos\theta(1 +  cot\theta) \\  \\   \sf \:  sin\theta \bigg ( 1 +  \dfrac{ \sin\theta}{cos\theta}  \bigg) + cos\theta\bigg (1 +  \dfrac{cos \theta}{sin \theta}  \\  \\  \sf \: sin  \theta\bigg( \dfrac{cos \theta + sin \theta}{cos \theta} \bigg) + cos \theta \bigg( \dfrac{sin \theta + cos \theta}{sin \theta}   \bigg) \\  \\  \sf \dfrac{sin \theta.cos \theta +  {sin}^{2}  \theta}{cos \theta}  +  \dfrac{sin \theta.cos \theta +  {cos}^{2} \theta}{sin \theta}  \\  \\  \sf \:  \dfrac{sin \theta \big(sin\theta.cos\theta +  {sin}^{2} \theta \big) + cos\theta \big(sin \theta.cos\theta +  {cos}^{2} \theta }{cos\theta.sin\theta}  \\  \\  \sf \:  \dfrac{ {sin}^{2}\theta.cos \theta +  {sin}^{3}\theta + sin \theta. {cos}^{2}\theta +  {cos}^{3} \theta }{cos\theta.sin\theta}  \\  \\  \sf \:  \dfrac{ {sin}^{2}\theta \big(cos\theta + sin\theta \big) +  {cos}^{2} \theta \big(sin\theta + cos\theta \big) }{cos\theta.sin\theta}  \\  \\  \sf \:  \dfrac{ \big(cos\theta + sin\theta \big) \big( {sin}^{2}\theta +  {cos}^{2} \theta \big) }{cos\theta.sin\theta}  \\  \\  \sf \dfrac{cos\theta + sin\theta}{cos\theta.sin\theta}  \\  \\  \sf \:  \dfrac{cos\theta}{ cos\theta.sin\theta} +  \frac{sin \theta}{cos\theta.sin\theta}  \\  \\  \sf \: \dfrac{ \cancel {cos\theta}}{  \cancel{cos\theta}.sin\theta} +  \dfrac{ \cancel{sin \theta}}{cos\theta. \cancel{sin\theta}  } \\  \\  \sf \:  \dfrac{1}{sin \theta}  +  \dfrac{1}{cos\theta}  \\  \\  \sf \: cosec\theta \:  + sec\theta

= R.H.S

L.H.S = R.HS

hence proved ✓✓

Similar questions