Math, asked by ksmchoda2003gmaipcom, 1 year ago

sin theta( 1+tan theta) + cos theta(1+ cot theta) = sec theta + cosec theta we have to prove tell me the answer quickly

Answers

Answered by aquialaska
614

Answer:

We need to prove: sin\,\theta(1+tan\,\theta)+cos\,\theta(1+cot\,\theta)=sec\,\theta+cosec\,\theta

LHS=sin\,\theta(1+tan\,\theta)+cos\,\theta(1+cot\,\theta)

using,  tan\,\theta=\frac{sin\,\theta}{cos\,\theta}\:\:and\:\:cot\,\theta=\frac{cos\,\theta}{sin\,\theta}

=sin\,\theta(1+\frac{sin\,\theta}{cos\,\theta})+cos\,\theta(1+\frac{cos\,\theta}{sin\,\theta})

=sin\,\theta(\frac{cos\,\theta+sin\,\theta}{cos\,\theta})+cos\,\theta(\frac{sin\,\theta+cos\,\theta}{sin\,\theta})

=(cos\,\theta+sin\,\theta)(\frac{sin\,\theta}{cos\,\theta})+\frac{cos\,\theta}{sin\,\theta})

=(cos\,\theta+sin\,\theta)(\frac{sin^2\,\theta+cos^2\,\theta}{cos\,\theta\:sin\,\theta})

We know that, sin^2\,\theta+cos^2\,\theta=1

=(cos\,\theta+sin\,\theta)(\frac{1}{cos\,\theta\:sin\,\theta})

=\frac{cos\,\theta+sin\,\theta}{cos\,\theta\:sin\,\theta}

=\frac{cos\,\theta}{cos\,\theta\:sin\,\theta}+\frac{sin\,\theta}{cos\,\theta\:sin\,\theta}

=\frac{1}{sin\,\theta}+\frac{1}{cos\,\theta}

we know that, \frac{1}{sin\,\theta}=cosec\,\theta\:\:and\:\:\frac{1}{cos\,\theta}=sec\,\theta

=cosec\,\theta+sec\,\theta

= RHS

Hence Proved.    

Answered by bhavnabutolia83
0

Answer:

sin theta (1+sin theta/cos theta) + cos theta (1 + cos theta/sin theta)

Similar questions