Math, asked by Ruatpui, 10 months ago

Sin theta - 2 sin theta / 2 cos³ theta - cos theta = tan theta

Answers

Answered by mishradeeksha273
0

Answer:

i hope you are satisfied with my solution

Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

\mathsf{Given : \dfrac{Sin\theta - 2Sin^3\theta}{2Cos^3\theta - Cos\theta}}

\mathsf{Taking\;Sin\theta\;Common\;in\;the\;Numerator\;and\;Cos\theta\;Common\;in\;the\;Denominator :}

\mathsf{\implies \dfrac{Sin\theta(1 - 2Sin^2\theta)}{Cos\theta(2Cos^2\theta - 1)}}

\mathsf{\implies (\dfrac{Sin\theta}{Cos\theta}) \dfrac{(1 - 2Sin^2\theta)}{(2Cos^2\theta - 1)}}

\mathsf{We\;know\;that :}

✿  \mathsf{Tan\theta = \dfrac{Sin\theta}{Cos\theta}}

✿  \mathsf{Cos2\theta = 1 - 2Sin^2\theta}

✿  \mathsf{Cos2\theta = 2Cos^2\theta - 1}

\mathsf{Substituting\;all\;the\;Respective\;Values,\;We\;get :}

\mathsf{\implies (Tan\theta) \dfrac{(Cos2\theta)}{(Cos2\theta)}}

\mathsf{\implies Tan\theta}

Similar questions