Math, asked by sriramkanna2005, 1 year ago

sin theta - 2sin cube theta/2cos cube theta-cos theta = tan theta​

Answers

Answered by IshikaSunilSharma
1

Answer:

solution refers to the attachment

hope it helps u dear

Attachments:
Answered by harendrachoubay
1

\dfrac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta-\cos \theta}=\tan \theta, proved.

Step-by-step explanation:

To prove that, \dfrac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta-\cos \theta}=\tan \theta.

L.H.S. = \dfrac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta-\cos \theta}

=\dfrac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2\cos^2 \theta-1)}

=\dfrac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2(1 - \sin^2 \theta)-1)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A=1

\cos^2 A=1-\sin^2 A

=\dfrac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(2- 2\sin^2 \theta-1)}

=\dfrac{\sin \theta(1 - 2\sin^2 \theta)}{\cos \theta(1- 2\sin^2 \theta)}

=\dfrac{\sin \theta}{\cos \theta}

= \tan \theta

= R.H.S., proved.

Thus, \dfrac{\sin \theta - 2\sin^3 \theta}{2\cos^3 \theta-\cos \theta}=\tan \theta, proved.

Similar questions