Math, asked by shaikamzad2004, 5 days ago

sin theta =2x/1+x^2 then tan theta​

Answers

Answered by paabhinav175
0

Answer:

(From attachment diagram)

Solution :

sin theta = 2x / 1+x^2 = Adjacent/Hypotenuse

By phythagoras theorem

Base = Hypotenuse ^2 - Adjacent^2

AB = (1+x^2) - (4x^2)

Ab = 1+x^4+2x^2-4x^2

AB = 1+x^4 -2x^2

AB= (1-x^2)^2

AB= 1-x^2

Tan theta = BC/AB

= 1-x^2/2x

Answer: Tan theta = 1-x^2/2x

Happy independence Day

Attachments:
Answered by ajr111
7

Answer:

\mathrm{tan\theta = \dfrac{2x}{1 - x^2} }

Step-by-step explanation:

Given :

\mathrm {sin\theta = \dfrac{2x}{1 + x^2}}

To find :

\text{The value of } \mathrm{tan\theta}

Solution :

Let us substitute x = tanФ

thus, Ф = tan⁻¹(x)

\longmapsto \mathrm {sin\theta = \dfrac{2x}{1 + x^2}}

So, on substituting, we get,

\implies \mathrm {sin\theta = \dfrac{2tan\phi}{1 + tan^2\phi}}

We know that,

\boxed{\mathrm{ \dfrac{2tanx}{1 + tan^2x} = sin2x}}

So,

\implies \mathrm {sin\theta = sin2\phi}

\implies \theta = 2\phi

As, Ф = tan⁻¹(x)

\implies \mathrm{\theta = 2tan^{-1}x}

\implies \mathrm {tan^{-1}x = \dfrac{\theta}{2} }

\implies \mathrm {x = tan{\dfrac{\theta}{2} }}

We know that,

\boxed{\mathrm{tanx = \dfrac{2tan\dfrac{\theta}{2}}{1 - tan^2\dfrac{\theta}{2} } }}

Substituting x in place of tan(θ/2), we get,

\implies \underline{\boxed{\mathrm{tan\theta = \dfrac{2x}{1-x^2} }}}

Hope it helps!!

Similar questions