sin theta=a-b/a+b,cos theta=?
Answers
Answered by
11
Given, sinθ =
Square on both sides
⇒ sin²θ =
sin²A = 1 - cos²A [ From trigonometric identities ]
⇒ 1 - cos²θ =
⇒ 1 - = cos²θ
⇒ = cos²θ
⇒ = cos²θ
( a + b )^2 = a^2 + b^2 + 2ab [ From expansion ]
( a - b )^2 = a^2 + b^2 + 2ab [ From expansion ]
⇒ = cos²θ
⇒ cos²θ
Square root on both sides
⇒
⇒ = cosθ
Therefore the value of cosθ satisfying the given equation is
sid8745:
thanks a lot bro
Answered by
3
cos theta=root 1-sinsq.theta
=root 1-(a-b)sq./(a+b)sq.
=root (a+b)sq.-(a-b)sq./(a+b)sq.
=root a^2+b^2+2ab-a^2-b^2+2ab /(a+b)sq.
=root 4ab/(a+b)sq.
=(2/a+b)root ab
=root 1-(a-b)sq./(a+b)sq.
=root (a+b)sq.-(a-b)sq./(a+b)sq.
=root a^2+b^2+2ab-a^2-b^2+2ab /(a+b)sq.
=root 4ab/(a+b)sq.
=(2/a+b)root ab
Similar questions