Math, asked by sid8745, 1 year ago

sin theta=a-b/a+b,cos theta=?

Answers

Answered by abhi569
11

Given, sinθ = \dfrac{a-b}{a+b}


Square on both sides


⇒ sin²θ = \dfrac{(a-b)^{2}}{(a+b)^{2}}


sin²A = 1 - cos²A     [ From trigonometric identities ]


⇒ 1 - cos²θ = \dfrac{(a-b)^2}{(a+b)^2}


⇒ 1 - \dfrac{(a-b)^2}{(a+b)^2}= cos²θ


\dfrac{1( a +b)^2 - ( a-b)^2}{(a+b)^2} = cos²θ


\dfrac{( a +b)^2 - ( a-b)^2}{(a+b)^2} = cos²θ

( a + b )^2 = a^2 + b^2 + 2ab  [ From expansion ]

( a - b )^2 = a^2 + b^2 + 2ab   [ From expansion ]


\Rightarrow \dfrac{a^2 + b^2 + 2ab - ( a^2 + b^2 - 2ab) }{ (a+b)^2} = cos^2 \theta


\Rightarrow \dfrac{a^2 + b^2 + 2ab - a^2 - b^2 + 2ab) }{ (a+b)^2} = cos^2 \theta


\dfrac{4ab}{(a+b)^2}  = cos²θ


\dfrac{4ab}{(a+b)^2} = cos²θ


Square root on both sides


\sqrt{\dfrac{4ab}{(a+b)^2} }= \sqrt{cos^2 \theta}


\dfrac{2\sqrt{ab}}{a+b} = cosθ



Therefore the value of cosθ satisfying the given equation is \dfrac{2\sqrt{ab}}{a+b}


sid8745: thanks a lot bro
abhi569: welcome
abhi569: :-)
Answered by nishu9915
3
cos theta=root 1-sinsq.theta
=root 1-(a-b)sq./(a+b)sq.
=root (a+b)sq.-(a-b)sq./(a+b)sq.
=root a^2+b^2+2ab-a^2-b^2+2ab /(a+b)sq.
=root 4ab/(a+b)sq.
=(2/a+b)root ab

sid8745: thanks a lot
sid8745: yep
Similar questions