Math, asked by ishika1905, 1 year ago

sin theta = a/b then find sec theta + tan theta

Attachments:

Answers

Answered by nobel
3
Trigonometry

Let 'e' insted of theta ok
We have sine = a/b

Now,
sece + tane
= (1/cose)+(sine/cose)
= (1+sine)/cose
= (1+sine)/√(cos²e)
= (1+sine)/{√(1 - sin²e)}
= (1+a/b)/{√(1-a²/b²)
= (a+b)/√(b²-a²)

That's it
Hope it helped
=_=

ishika1905: thank you!
nobel: (+_+)
KunalTheGreat: v_V
KunalTheGreat: :)
KunalTheGreat: yo nobel
nobel: What
Answered by aquialaska
5

Answer:

sec\,\theta+tan\,\theta=\sqrt{\frac{b+a}{b-a}}

Step-by-step explanation:

Given:

sin\,\theta=\frac{a}{b}

To find: sec\,\theta+tan\,\theta

Using Trigonometric identity,

cos\,\theta=\sqrt{1-sin^2\,\theta}

cos\,\theta=\sqrt{1-(\frac{a}{b})^2}

cos\,\theta=\sqrt{(\frac{b^2-a^2}{b^2}}

cos\,\theta=\frac{\sqrt{b^2-a^2}}{b}

\implies sec\,\theta=\frac{1}{cos\,\theta}=\frac{b}{\sqrt{b^2-a^2}}

\implies tan\,\theta=\frac{sin\,\theta}{cos\,\theta}=\frac{a}{\sqrt{b^2-a^2}}

Now,

sec\,\theta+tan\,\theta

=\frac{b}{\sqrt{b^2-a^2}}+\frac{a}{\sqrt{b^2-a^2}}

=\frac{b+a}{\sqrt{(b-a)(b+a)}}

=\frac{\sqrt{b+a}\sqrt{b+a}}{\sqrt{b-a}\sqrt{b+a}}

=\frac{\sqrt{b+a}}{\sqrt{b-a}}

=\sqrt{\frac{b+a}{b-a}}

Therefore, sec\,\theta+tan\,\theta=\sqrt{\frac{b+a}{b-a}}

Similar questions