Math, asked by manish4540, 1 year ago

sin theta barabar root 1 minus cos square

Answers

Answered by abhi569
3

First finding the value of sin²θ + cos²θ : -


sin²θ + cos²θ

\dfrac{\mathbf{height^{2}}}{\mathbf{hypotenuse^{2}}} + \dfrac{\mathbf{base^{2}}}{\mathbf{hypotenuse^{2}}}


\dfrac{\mathbf{height^2 + base^2}}{\mathbf{hypotenuse^2}}


From pythagoras theorem, height^2 + base^2 = hypotenuse^2.Now, substituting the value of height^2 + base^2.


\dfrac{hypotenuse^2}{hypotenuse^2}


⇒ 1



∴ sin²θ + cos²θ = 1


Adding - cos²θ on both sides,


sin²θ + cos²θ - cos²θ = 1 - cos²θ

⇒ sin²θ = 1 - cos²θ

 

Square root on both sides


⇒ √sin² = √1 - cos²θ

∴ sinθ = \sqrt{1-cos \theta}


Hence, proved that sinθ = √1 - cos²θ




Similar questions