Math, asked by manideep8748, 11 months ago

Sin theta by cot theta + cosec theta minus sin theta by cos theta minus cosec theta is equals to 2 prove that

Answers

Answered by mindfulmaisel
2

$ \frac{\text{sin}\theta}{\text{cot}\theta + \text{cosec}\theta} -  \frac{\text{sin}\theta}{\text{cot}\theta - \text{cosec}\theta} = 2 is proved

Step-by-step explanation:

To Prove:

$ \frac{\text{sin}\theta}{\text{cot}\theta + \text{cosec}\theta} -  \frac{\text{sin}\theta}{\text{cot}\theta - \text{cosec}\theta} = 2

Left Hand Side:

$ \text{sin}\theta \frac{ \text{cot}\theta - \text{cosec}\theta - \text{cot}\theta - \text{cosec}\theta}{(\text{cot}\theta -  \text{cosec}\theta) (\text{cot}\theta -  \text{cosec}\theta)}

We know that (a+b)(a-b)= a²-b²

$ = \text{sin}\theta \frac{ -2\text{cosec}\theta}{(\text{cot}^2\theta -  \text{cosec}^2\theta)}

$ = \frac{ -2\text{sin}\theta  \text{cosec}\theta}{(\text{cot}^2\theta -  \text{cosec}^2\theta)} -----> (1)

As,

$ \text{sin}\theta = \frac{1}{\text{cosec}\theta}

$ \text{sin}\theta \times \text{cosec}\theta = 1 ----->(2)

\text{cot}^2 \theta + 1 = \text{cosec}^2\theta

\text{cot}^2 \theta - \text{cosec}^2\theta = 1 ----->(3)

Substitute the equation 2 and 3 in equation 1,

$ \frac{2 \times 1}{1} = 2

= Right Hand side

LHS = RHS

Hence the given condition is proved.

To Learn More:

1. Sintheta -cos theta /sin theta +cos theta +sin theta +cos theta /sin theta -cos theta =2/2sin²theta -1

brainly.in/question/3175254

2. Sin theta _ 2 sin3 theta / 2cos3 theta _ cos theta = tan theta

brainly.in/question/5462955

Similar questions