Math, asked by saikaushik1, 1 year ago

sin theta -cos theta=0,find the value of sin^4theta + cos^4 theta

Answers

Answered by nikhil249
1
sin theta-cos theta=0

 {sin}^{4}theta+  {cos}^{4}theta =  {sin}^{4}theta +  {cos}^{4}theta - 2 {sin}^{2}theta  \times  {cos}^{2}theta + 2 {sin}^{2} theta\times {cos}^{2}theta
=》
( {sin}^{2}theta -  {cos}^{2}theta  ) + 2 {sin}^{2}theta {cos}^{2}theta
 = 0 + 2 {sin}^{2}theta {cos}^{2}theta
=》
2 {sin}^{2}theta {cos}^{2}theta
answer
Answered by namrata29
2
take this ( || )as theta,
sin || - cos || =0
sin ||=cos ||
sin ||/cos ||=1
tan ||=1
TAN ||=P/B
P=1,B=1
pythagoras theorem,
H^2=P^2+B^2
H^2=1^2 +1^2
H^2=2
H=√2

Therefore,
sin^4 || + cos^4 ||
=(p/h)^4 +(b/h)^4
=(1/√2)^4 +(1/√2)^4
=1/4 + 1/4
=2/4
=1/2 (answer)


saikaushik1: intelligent answer...... thanks
nikhil249: u welcm...
Similar questions