sin theta -cos theta+1
Attachments:
Answers
Answered by
16
Question
Prove (sin∅ - cos∅ + 1)/(sin∅ + cos∅ - 1) = 1/(sec∅ - tan∅).
Solution
By dividing L.H.S from cos∅
→ {(sin∅ - cos∅ + 1)/cos∅}/{(sin∅ + cos∅ - 1)/cos∅}
→ (sin∅/cos∅ - cos∅/cos∅ + 1/cos∅)/(sin∅/cos∅ + cos∅/cos∅ - 1/cos∅)
→ (tan∅ - 1 + sec∅)/(tan∅ + 1 - sec∅)
Since 1 = sec²∅ - tan²∅
→ (tan∅ + sec∅ - 1)/(tan∅ - sec∅ + sec²∅ - tan²∅)
→ (tan∅ + sec∅ - 1)/{tan∅ - sec∅ + (sec∅ - tan∅)(sec∅ + tan∅)}
→ (tan∅ + sec∅ - 1)/{tan∅ - sec∅ - (tan∅ - sec∅)(sec∅ + tan∅)
→ (tan∅ + sec∅ - 1)/(1 - sec∅ - tan∅)(tan∅ - sec∅)
→ (tan∅ + sec∅ - 1)/(tan∅ + sec∅ - 1)(sec∅ - tan∅)
→ 1/(sec∅ - tan∅) = R.H.S
Hence Proved
Answered by
8
ɦεყ ɱαƭε !!
Answer refers to the attachment.
hope it helps..
Attachments:
Similar questions
Math,
6 months ago
Science,
6 months ago
Environmental Sciences,
6 months ago
Political Science,
11 months ago
Biology,
11 months ago
Math,
1 year ago