Math, asked by monithalokesh, 3 months ago

sin theta - cos theta +1 /sin theta + cos theta -1 = 1/sec theta - tan theta​

Answers

Answered by mithun5754
0

Answer:

Consider the L.H.S

sinθ+cosθ−1

sinθ−cosθ+1

=(

sinθ+cosθ−1

sinθ−cosθ+1

)×(

sinθ+cosθ+1

sinθ+cosθ+1

)

=(

sinθ+cosθ−1

sinθ+1−cosθ

)×(

sinθ+cosθ+1

sinθ+1+cosθ

)

=

(sinθ+cosθ)

2

−1

2

(sinθ+1)

2

−cos

2

θ

=

sin

2

θ+cos

2

θ+2sinθcosθ−1

sin

2

θ+1+2sinθ−cos

2

θ

Since, sin

2

θ+cos

2

θ=1

Therefore,

=

1+2sinθcosθ−1

1−cos

2

θ+1+2sinθ−cos

2

θ

=

2sinθcosθ

2−2cos

2

θ+2sinθ

=

sinθcosθ

1−cos

2

θ+sinθ

=

sinθcosθ

sin

2

θ+sinθ

=

cosθ

sinθ+1

=

cosθ

1

+

cosθ

sinθ

=secθ+tanθ

=(secθ+tanθ)×(

secθ−tanθ

secθ−tanθ

)

=

secθ−tanθ

sec

2

θ−tan

2

θ

We know that

sec

2

θ−tan

2

θ=1

Therefore,

=

secθ−tanθ

1

Hence, proved.

Answered by chaitrachaitra454
0

Answer:

sin theta -1 = 1/sec theta - tan theta

- cos theta +1 /sin theta + cos

Similar questions