(Sin theta+cos theta )(1-sin theta cos theta ). Can be written as
Answers
Answered by
0
Step-by-step explanation:
sinθ+cosθ−sin
sinθ+cosθ−sin 2
θcosθ−sinθcos
θcosθ−sinθcos 2
θcosθ−sinθcos 2 θ
θcosθ−sinθcos 2 θ=cosθ(1−sin
θcosθ−sinθcos 2 θ=cosθ(1−sin 2
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2 θ)=cos
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2 θ)=cos 3
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2 θ)=cos 3 θ+sin
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2 θ)=cos 3 θ+sin 3
θcosθ−sinθcos 2 θ=cosθ(1−sin 2 θ)+sinθ(1−cos 2 θ)=cos 3 θ+sin 3 θ.
MARK ME BRAINLIEST PLSSS
Similar questions