Math, asked by manishabhattacharya, 9 months ago

(sin theta- cos theta)^2​

Answers

Answered by Anonymous
2

Given that,

  • (sin θ - cos θ)²

Let,

\sf\:\implies (\sin\:\theta -\cos\:\theta)^{2}

  • (a - b)² = a² + b² - 2ab

\sf\:\implies (\sin\:\theta)^{2} + (\cos\:\theta)^{2} - 2\sin\:\theta\cos\:\theta

\sf\:\implies \sin^{2}\:\theta + \cos^{2}\:\theta - 2\sin\:\theta\cos\:\theta

  • sin² θ + cos² θ = 1

\sf\:\implies 1 - 2\sin\:\theta\cos\:\theta

\underline{\boxed{\rm{\purple{\therefore (\sin\: \theta - \cos\:\theta)^{2} = 1 - 2\sin\:\theta\cos\:\theta}}}}\:\orange{\bigstar}

Answered by Anonymous
6

Answer:

Q: (SinΦ - CosΦ)²

=> (SinΦ)² + (CosΦ)² - 2×SinΦ×CosΦ

=> Sin²Φ + Cos²Φ -2SinΦCosΦ

=> 1 - 2SinΦCosΦ ans.

Step-by-step explanation:

20 thnks = INBOX.

Similar questions