(sin theta + cos theta)^2 + (sin theta - cos theta)^2?
Answers
Answered by
1
See below. Explanation: Left Side =sin2θ+2sinθcosθ+cos2θ+sin2θ−2sinθ cosθ+cos2θ. =(sin2θ+cos2θ)+(sin2θ+cos2θ)
Answered by
1
Solution:
( sin θ + cos θ)^2 + ( sin θ - cos θ)^2
= (sin θ + cos θ)^2 + (sin θ - cos θ)^2
= (sin^2 θ + 2sin θ cos θ + cos^2 θ) + (sin^2 θ - 2sin θ cos θ + cos^2 θ)
= (sin^2 θ + cos^2 θ) + 2sin θ cos θ) + (sin^2 θ + cos^2 θ) - 2sin θ cos θ)
= (1 + 2sin θ cos θ) + (1 - 2sin θ cos θ)
= 2
Hope this would help
( sin θ + cos θ)^2 + ( sin θ - cos θ)^2
= (sin θ + cos θ)^2 + (sin θ - cos θ)^2
= (sin^2 θ + 2sin θ cos θ + cos^2 θ) + (sin^2 θ - 2sin θ cos θ + cos^2 θ)
= (sin^2 θ + cos^2 θ) + 2sin θ cos θ) + (sin^2 θ + cos^2 θ) - 2sin θ cos θ)
= (1 + 2sin θ cos θ) + (1 - 2sin θ cos θ)
= 2
Hope this would help
Similar questions
Social Sciences,
3 months ago
Math,
3 months ago
English,
7 months ago
Science,
7 months ago
Math,
11 months ago