Math, asked by kasturi4680, 7 months ago

Sin theta + cos theta = √ 2 then (tan theta + cot theta) = ?​

Answers

Answered by patradebashish575
0

Step-by-step explanation:

1 gsyhdrutttfeweddgoigfd543

Answered by ExElegant
1

\huge{\mathbb{\red{ANSWER:-}}}

\sf{SinO + CosO =\sqrt{2}}

\sf{SinO(1+CotO)=\sqrt{2}}

\sf{(1 + CotO)=\sqrt{2}CosecO}

\sf{Doing \: square \: both \: side-}

\sf{(1+CotO)^2 = 2Cosec^2 O}

\sf{(1+Cot^2 O + 2CotO)=2Cosec^2 O}

\sf{Cosec^2 O + 2CotO = 2Cosec^2 O}

\sf{Cosec^2 O = 2CotO}

\sf{\dfrac{1}{Sin^2 O}=2\dfrac{CosO}{SinO}}

\sf{\dfrac{1}{SinO}=2CosO}

\sf{2SinOCosO=1}

\sf{\dfrac{1}{SinOCosO}=2} --(1)

\sf{Now}

\sf{tanO + CotO}

\sf{\dfrac{SinO}{CosO}+\dfrac{CosO}{SinO}}

\sf{\dfrac{(Sin^2 O + Cos^2 O)}{SinOCosO}}

\sf{\dfrac{1}{SinOCosO}}

\sf{From \: eq.(1)}

=\sf{2}

\sf{(tanO + CotO) = 2}

Using properties :-

1)\sf{Cosec^2 O = 1 + Cot^2 O}

2)\sf{Sin^2 O + Cos^2 O = 1}

3)\sf{CosecO=\dfrac{1}{SinO}}

Similar questions