Math, asked by geetha98raz, 2 months ago


{ \sin \theta } { \cos \theta } = 32 \sin ^ { 5 } \theta - 32 \sin ^ { 3 } \theta + \sin \theta​

Answers

Answered by nalagarh48
0

Answer:

sin6θ=2sin3θcos3θ

=2(3sinθ−4sin

3

θ)(4cos

3

θ−3cosθ)

=24sinθcos

3

θ−18sinθcosθ−32sin

3

θcos

3

θ+24sin

3

θcosθ

=24sinθcosθ(1−sin

2

θ)−18sinθcosθ−32sinθ(1−cos

2

θ)cos

3

θ+24sin

3

θcosθ

=24sinθcosθ−24sin

3

θcosθ−18sinθcosθ−32sinθcos

3

θ+32cos

5

θsinθ+24sin

3

θcosθ

=32cos

5

θsinθ−32sinθcos

3

θ+6sinθcosθ

=32cos

5

θsinθ−32sinθcos

3

θ+3sin2θ

Therefore x=sin2θ

Similar questions