sin theta-cos theta=√6-√2/2, then tha value of 4(sin^3-cos^3)^2 is equal to
Answers
.........(1)
If 3x=cosecθ and 3/x=cotθ, then find the value of 3(x²-1/x²) PLEASE HELP BEST ANSWER WILL BE MARKED BRAINLIEST
https://brainly.in/question/21134289
Answer:
sinθ−cosθ=
2
6
−
2
\textbf{To find:}To find:
\textsf{The value of}\;\mathsf{4(sin^3\theta-cos^3\theta)^2}The value of4(sin
3
θ−cos
3
θ)
2
\textbf{Solution:}Solution:
\mathsf{Consider,}Consider,
\mathsf{sin\theta-cos\theta=\dfrac{\sqrt{6}-\sqrt{2}}{2}}sinθ−cosθ=
2
6
−
2
\textsf{Squaring on bothsides, we get}Squaring on bothsides, we get
\mathsf{(sin\theta-cos\theta)^2=\left(\dfrac{\sqrt{6}-\sqrt{2}}{2}\right)^2}(sinθ−cosθ)
2
=(
2
6
−
2
)
2
\mathsf{sin^2\theta+cos^2\theta-2\,sin\theta\,cos\theta=\dfrac{6+2-2\sqrt{12}}{4}}sin
2
θ+cos
2
θ−2sinθcosθ=
4
6+2−2
12
\mathsf{1-2\,sin\theta\,cos\theta=\dfrac{8-4\sqrt{3}}{4}}1−2sinθcosθ=
4
8−4
3
\mathsf{1-2\,sin\theta\,cos\theta=2-\sqrt{3}}1−2sinθcosθ=2−
3
\mathsf{1-2+\sqrt{3}=2\,sin\theta\,cos\theta}1−2+
3
=2sinθcosθ
\mathsf{-1+\sqrt{3}=2\,sin\theta\,cos\theta}−1+
3
=2sinθcosθ
\implies\mathsf{sin\theta\,cos\theta=\dfrac{\sqrt{3}-1}{2}}⟹sinθcosθ=
2
3
−1
.........(1)
\textsf{Now}Now
\mathsf{sin^3\theta-cos^3\theta}sin
3
θ−cos
3
θ
\mathsf{=(sin\theta-cos\theta)(sin^2\theta+sin\theta\,cos\theta+cos^2\theta)}=(sinθ−cosθ)(sin
2
θ+sinθcosθ+cos
2
θ)
\mathsf{=(sin\theta-cos\theta)(1+sin\theta\,cos\theta)}=(sinθ−cosθ)(1+sinθcosθ)
\mathsf{=\left(\dfrac{\sqrt{6}-\sqrt{2}}{2}\right)\left(1+\dfrac{\sqrt{3}-1}{2}\right)}=(
2
6
−
2
)(1+
2
3
−1
)
\mathsf{=\left(\dfrac{\sqrt{6}-\sqrt{2}}{2}\right)\left(\dfrac{\sqrt{3}+1}{2}\right)}=(
2
6
−
2
)(
2
3
+1
)
\mathsf{=\left(\dfrac{\sqrt{2}(\sqrt{3}-1)}{2}\right)\left(\dfrac{\sqrt{3}+1}{2}\right)}=(
2
2
(
3
−1)
)(
2
3
+1
)
\mathsf{=\dfrac{\sqrt{2}(\sqrt{3}^2-1^2)}{4}}=
4
2
(
3
2
−1
2
)
\mathsf{=\dfrac{\sqrt{2}(3-1)}{4}}=
4
2
(3−1)
\mathsf{=\dfrac{2\sqrt{2}}{4}}=
4
2
2
\mathsf{=\dfrac{\sqrt{2}}{2}}=
2
2
\mathsf{Now,}Now,
\mathsf{4(sin^3\theta-cos^3\theta)^2}4(sin
3
θ−cos
3
θ)
2
\mathsf{=4\left(\dfrac{\sqrt{2}}{2}\right)^2}=4(
2
2
)
2
\mathsf{=4\left(\dfrac{2}{4}\right)}=4(
4
2
)
\mathsf{=2}=2
\implies\boxed{\mathsf{4(sin^3\theta-cos^3\theta)^2=2}}⟹
4(sin
3
θ−cos
3
θ)
2
=2
\textbf{Find more:}Find more:
If 3x=cosecθ and 3/x=cotθ, then find the value of 3(x²-1/x²)