Math, asked by aaakings7767, 1 year ago

Sin theta - cos theta=7/13 find sin theta + cos theta

Answers

Answered by Potenz
32

Answer is in the attachment..

Hope it helps :)

Attachments:
Answered by JeanaShupp
17

The value of \sin \theta +\cos \theta=\dfrac{17}{13} .

Explanation:

Given : \sin \theta -\cos \theta= \dfrac{7}{13}

To find : \sin \theta +\cos \theta

Consider :   \sin \theta -\cos \theta= \dfrac{7}{13}

Squaring both sides , we get

(\sin \theta -\cos \theta)^2= (\dfrac{7}{13})^2

\Rightarrow\ \sin^2 \theta +\cos^2 \theta-2\sin \theta\cos \theta= \dfrac{49}{169}

\Rightarrow\ 1-2\sin \theta\cos \theta= \dfrac{49}{169}   [Since , \sin^2 x +\cos^2x=1]

\Rightarrow\ 2\sin \theta\cos \theta= 1-\dfrac{49}{169}=\dfrac{169-49}{169}=\dfrac{120}{169}   (1)

Consider (\sin \theta +\cos \theta)^2= \sin^2 \theta +\cos^2 \theta+2\sin \theta\cos \theta

From (1),

(\sin \theta +\cos \theta)^2= 1+\dfrac{120}{169}=\dfrac{169+120}{169}

i.e. (\sin \theta +\cos \theta)^2=\dfrac{289}{169}

Taking square root on both sides , we get

. \sin \theta +\cos \theta=\sqrt{\dfrac{289}{169}}=\dfrac{17}{13}

Hence, the value of \sin \theta +\cos \theta=\dfrac{17}{13}

# Learn more :

If Sin theta

-Cos theta=½find Sin theta+Cos theta

https://brainly.in/question/12336999

Similar questions