sin theta + cos theta divided by sin theta minus cos theta + sin theta minus cos theta divided by sin theta + cos theta is equal to 2 secant squared theta divided by tan squared theta minus one
Answers
Answer:
The angles at which the relative error exceeds 1% are as follows: tan θ ≈ θ at about 0.176 radians (10°). sin θ ≈ θ at about 0.244 radians (14°). cos θ ≈ 1 − θ22 at about 0.664 radians (38°
Step-by-step explanation:
Step-by-step explanation:
LHS=
(sin theta+cos theta) / ( sin theta - cos theta)
+( sin theta+ cos theta) / ( sin theta+ cos theta)
= [ (sin theta+ cos theta)²+(sin theta- cos theta)²]
divided by (sin²theta- cos² theta)
= (1+ sin2theta+1-sin2theta) / ( 2sin²theta-1)
= 2 / (2sin²theta -1)
multipliying and dividing by sec² theta
= 2sec²theta / (2 sin² theta-1) sec² theta
= 2 sec² theta / ( 2 tan²theta- sec²theta)
= 2sec²theta/ [ tan²theta-(sec²theta-tan²theta)]
= 2sec²theta /( tan²theta -1)
= RHS
PROVED
formula used
(1) sin²theta+ cos²theta = 1
(2) 2 sin theta cos theta = sin2 theta
(3) (a+b)(a-b) = a²-b²
(4) sec²theta- tan²theta =1
(5) sin theta.sec theta = tan theta