Math, asked by sirisailaja1, 11 months ago

sin theta + cos theta equal to root 2 sin (90 degrees - theta ) then find cos theta​

Answers

Answered by Anonymous
5

Answer:

 \cos \theta =  \sin(45 \degree +  \theta)

Step-by-step explanation:

 \sin \theta +  \cos \theta =  \sqrt{2}  \sin(90 \degree -  \theta) \\  \implies \frac{1}{ \sqrt{2} } ( \sin \theta +  \cos \theta) =  \sin(90 \degree -  \theta) \\  \implies \frac{1}{ \sqrt{2} }  \sin \theta +  \frac{1}{ \sqrt{2} }  \cos \theta = \cos \theta \\  \implies \cos45 \degree \sin \theta +  \sin45 \degree \cos \theta =  \cos \theta \\  \implies \cos \theta =  \sin(45 \degree +  \theta)

Answered by silentlover45
2

Solutions:

sin(theta) + cos(theta) = √2sin (90°-theta)

1/√2 sin(theta) + 1/√2 cas(theta) = cas0

cas45° sin(theta) + sin45° cas(theta) = cos0

cad(theta) = sin (45°+theta).

silentlover45.❤️

Similar questions