Sin theta + cos theta ka whole square + sin theta minus cos theta ka whole square equal =2
Answers
Answered by
90
Proof :
L.H.S.
= (sinθ + cosθ)² + (sinθ - cosθ)²
= sin²θ + cos²θ + 2 sinθ cosθ + sin²θ + cos²θ - 2 sinθ cosθ
= 1 + 1, since sin²θ + cos²θ = 1
= 2
= R.H.S.
Hence, proved.
#MarkAsBrainliest
L.H.S.
= (sinθ + cosθ)² + (sinθ - cosθ)²
= sin²θ + cos²θ + 2 sinθ cosθ + sin²θ + cos²θ - 2 sinθ cosθ
= 1 + 1, since sin²θ + cos²θ = 1
= 2
= R.H.S.
Hence, proved.
#MarkAsBrainliest
Answered by
2
Answer:
(sin theta +cos theta)^2+(sin theta -cos theta )^2
Step-by-step explanation:
(sin^2theta+2×sin theta ×cos theta+cos ^2theta )+cos^2theta -2×sin theta ×cos theta+sin^2theta=2(sin^2theta+cos^2theta)=1+1=2
Similar questions
Science,
7 months ago
Math,
7 months ago
Math,
7 months ago
CBSE BOARD X,
1 year ago
Science,
1 year ago