Math, asked by surtipearl2559, 1 year ago

Sin theta + cos theta ka whole square + sin theta minus cos theta ka whole square equal =2

Answers

Answered by MarkAsBrainliest
90
Proof :

L.H.S.

= (sinθ + cosθ)² + (sinθ - cosθ)²

= sin²θ + cos²θ + 2 sinθ cosθ + sin²θ + cos²θ - 2 sinθ cosθ

= 1 + 1, since sin²θ + cos²θ = 1

= 2

= R.H.S.

Hence, proved.

#MarkAsBrainliest
Answered by jeevajl2001
2

Answer:

(sin theta +cos theta)^2+(sin theta -cos theta )^2

Step-by-step explanation:

(sin^2theta+2×sin theta ×cos theta+cos ^2theta )+cos^2theta -2×sin theta ×cos theta+sin^2theta=2(sin^2theta+cos^2theta)=1+1=2

Similar questions