Math, asked by fuzzy1730, 1 year ago

Sin theta + cos theta =m ,tan theta +cot theta =n eliminate theta in each of the following

Answers

Answered by MaheswariS
8

\textbf{Given:}

m=sin\theta+cos\theta

n=tan\theta+cot\theta

\textbf{To find:}

\text{Eliminating $\theta$ from the given equations}

\textbf{Solution:}

\text{Consider,}

m=sin\theta+cos\theta

\text{Squaring on bothsies, we get}

m^2=(sin\theta+cos\theta)^2

m^2=sin^2\theta+cos^2\theta+2\,sin\theta\,cos\theta

m^2=1+2\,sin\theta\,cos\theta.........(1)

\text{and}

n=tan\theta+cot\theta

n=\dfrac{sin\theta}{cos\theta}+\dfrac{cos\theta}{sin\theta}

n=\dfrac{sin^2\theta+cos^2\theta}{cos\theta\;sin\theta}

n=\dfrac{1}{cos\theta\;sin\theta}

cos\theta\;sin\theta=\dfrac{1}{n}........(2)

\text{Using (2) in (1), we get}

m^2=1+2(\dfrac{1}{n})

m^2=1+\dfrac{2}{n}

m^2=\dfrac{n+2}{n}

m^2n=n+2

\implies\bf\,m^2n-n-2=0

\textbf{Answer:}

\textbf{The required relation is}

\boxed{\bf\,m^2n-n-2=0}

Similar questions