Sin theta-cos theta = root2cos then prove that sintheta+costheta=root2sin theta
Answers
Answered by
0
Please find the answer in the attachment.
Attachments:
Answered by
0
Step-by-step explanation:
sinθ - cosθ = √2 cosθ
Squaring both sides,
sin²θ + cos²θ -2sinθcosθ= 2cos²θ
sin²θ - cos²θ = 2sinθcosθ (transposing 2cos²θ to LHS and 2sinθcosθ to RHS)
(sinθ+cosθ)(sinθ-cosθ)=2sinθcosθ (a²-b²=(a+b)*(a-b))
Given sinθ-cosθ=√2cosθ,
√2 cosθ(sinθ+cosθ)=2sinθcosθ
== sinθ+cosθ=√2 sinθ
Hence Proved
Similar questions