Math, asked by irfansharnas45, 5 months ago

sin theta-cos theta/sin theta + cos theta + sin theta + cos theta/sin theta-cos theta is equal to 2 / 2 sin squared theta minus one ​

Answers

Answered by brainlyofficial11
86

ANSWER

to prove

  \bold{\frac{ \sin \theta -  \cos \theta}{ \sin \theta  +  \cos \theta}   +  \frac{ \sin \theta +  \cos \theta}{ \sin \theta -  \cos \theta}  =  \frac{2}{2 \sin^{2}  \theta - 1} }\\

we have,

 \bold{LHS =  \frac{ \sin \theta -  \cos \theta}{ \sin \theta  +  \cos \theta} +  \frac{ \sin \theta +  \cos \theta}{ \sin \theta -   \cos \theta}  }\\

and

 \bold{RHS =  \frac{2}{2 \sin^{2} \theta - 1 } }\\

__________________________

now solve LHS

 \bold{LHS =  \frac{ \sin \theta -  \cos \theta}{ \sin \theta  +  \cos \theta} +  \frac{ \sin \theta +  \cos \theta}{ \sin \theta -   \cos \theta}  }

now, by taking LCM

 \bold{LHS =  \frac{(sin \theta -  \cos \theta)(  \sin \theta -  \cos \theta) + ( \sin \theta +  \cos \theta)( \sin \theta +  \cos \theta)}{( \sin \theta +  \cos \theta)( \sin \theta -  \cos \theta)} }

   \bold{: \implies LHS =  \frac{( { \sin}^{2} \theta +  { \cos}^{2} \theta - 2 \sin \theta \cos \theta) + (  { \sin}^{2}  \theta +  { \cos}^{2}  \theta + 2 \sin \theta \cos \theta)  }{  { \sin}^{2} \theta -  { \cos}^{2} \theta  } }

  \bold{ :  \implies LHS =  \frac{ { \sin}^{2}  \theta +   { \cos}^{2}  \theta - \cancel{ 2 \sin \theta \cos \theta }+  { \sin}^{2} \theta +  { \cos}^{2} \theta + \cancel {2 \sin \theta \cos \theta}  }{  { \sin}^{2}  \theta -  { \cos}^{2} \theta } }

  \bold{:  \implies LHS =  \frac{  { (\sin}^{2} \theta +  { \cos}^{2}   \theta) + (  { \sin}^{2} \theta +  { \cos}^{2 }   \theta)}{ { \sin}^{2} \theta -  {  \cos }^{2} \theta  } }

and

  \boxed{ \bold{{ \sin}^{2} \theta +   { \cos}^{2}   \theta = 1}}

  \bold{:  \implies LHS =  \frac{1 + 1}{ { \sin}^{2} \theta - { \cos}^{2 } \theta  } }

and

 \boxed{ \bold {{ \cos}^{2}  \theta = 1 -  { \sin}^{2}  \theta}}

  \bold{ :  \implies LHS =  \frac{1 + 1}{  { \sin}^{2}  \theta - (1 -  { \sin}^{2} \theta) } }

 \bold{ :  \implies LHS =  \frac{2}{ { \sin}^{2} \theta - 1 +  { \sin}^{2}  \theta } }

 \bold{ :  \implies LHS =  \frac{2}{2 { \sin}^{2} \theta - 1 }  =RHS }

so, LHS = RHS

hence, proved!

___________________________

☯︎ some identities :

  • sin² θ + cos² θ = 1

  • cos² θ = 1 - sin² θ

  • sin² θ = 1 - cos² θ

  • 1 + tan² θ = sec² θ

  • sec² θ - tan² θ = 1

  • sec² θ - 1 = tan² θ

  • 1 + cot² θ = cosec² θ

  • cosec² θ - cot² θ = 1

  • cosec² θ - 1 = cot² θ

  • sec θ + tan θ = 1/sec θ - tan θ

  • cosec θ + cot θ = 1/cosec θ - cot θ
Similar questions