Math, asked by suprithm, 1 year ago

Sin theta +cos theta /sin theta - cos theta +sin theta - cos theta /sin theta +cos theta=2 sec squre theta /tan squre theta -1

Attachments:

Answers

Answered by hukam0685
85
Solution:

 \frac{sin \: \theta + cos \: \theta}{sin \: \theta - cos \: \theta} + \frac{sin \: \theta - cos \: \theta}{sin \: \theta + cos \: \theta} \\ \\ \frac{ {(sin \: \theta + cos \: \theta)}^{2} +{(sin \: \theta - cos \: \theta)}^{2} }{ { {sin}^{2} \theta - {cos}^{2}\theta } } \\ \\ \frac{{sin}^{2} \theta + {cos}^{2} \theta + 2sin \: \theta \: cos \: \theta +{sin}^{2} \theta + {cos}^{2} \theta - 2sin \: \theta \: cos \: \theta }{{sin}^{2} \theta - {cos}^{2}\theta} \\ \\
Since

 {sin}^{2} \theta + {cos}^{2} \theta = 1 \\ \\
So

 \frac{1 + 1}{ {sin}^{2}\theta - {cos}^{2}\theta } \\ \\ = \frac{2}{ {cos}^{2}\theta\bigg( \frac{ {sin}^{2}\theta }{ {cos}^{2}\theta } - 1\bigg) } \\ \\
As

 \frac{1}{cos \: \theta} = sec \: \theta \\ \\ \frac{sin \: \theta}{cos \:\theta} \: = tan \: \theta \\ \\
So

 = \frac{2 {sec}^{2}\theta }{ {tan}^{2}\theta - 1 } \\ \\ hence \: proved \\ \\

Hope it helps you.
Answered by BHARAT269
6

Answer:

Hera is your answer hope it helps........ ✌️

Attachments:
Similar questions