sin theta+cos theta/sin theta - costheta + sin theta-cos theta/sin theta+cos theta =2sec^2 theta/tan^2-1=2/2sin^2theta-1
Answers
Answer:
Solution:
\begin{gathered}\frac{sin \: \theta + cos \: \theta}{sin \: \theta - cos \: \theta} + \frac{sin \: \theta - cos \: \theta}{sin \: \theta + cos \: \theta} \\ \\ \frac{ {(sin \: \theta + cos \: \theta)}^{2} +{(sin \: \theta - cos \: \theta)}^{2} }{ { {sin}^{2} \theta - {cos}^{2}\theta } } \\ \\ \frac{{sin}^{2} \theta + {cos}^{2} \theta + 2sin \: \theta \: cos \: \theta +{sin}^{2} \theta + {cos}^{2} \theta - 2sin \: \theta \: cos \: \theta }{{sin}^{2} \theta - {cos}^{2}\theta} \\ \\\end{gathered}
sinθ−cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ−cosθ
sin
2
θ−cos
2
θ
(sinθ+cosθ)
2
+(sinθ−cosθ)
2
sin
2
θ−cos
2
θ
sin
2
θ+cos
2
θ+2sinθcosθ+sin
2
θ+cos
2
θ−2sinθcosθ
Since
\begin{gathered}{sin}^{2} \theta + {cos}^{2} \theta = 1 \\ \\\end{gathered}
sin
2
θ+cos
2
θ=1
So
\begin{gathered}\frac{1 + 1}{ {sin}^{2}\theta - {cos}^{2}\theta } \\ \\ = \frac{2}{ {cos}^{2}\theta\bigg( \frac{ {sin}^{2}\theta }{ {cos}^{2}\theta } - 1\bigg) } \\ \\\end{gathered}
sin
2
θ−cos
2
θ
1+1
=
cos
2
θ(
cos
2
θ
sin
2
θ
−1)
2
As
\begin{gathered}\frac{1}{cos \: \theta} = sec \: \theta \\ \\ \frac{sin \: \theta}{cos \:\theta} \: = tan \: \theta \\ \\\end{gathered}
cosθ
1
=secθ
cosθ
sinθ
=tanθ
So
\begin{gathered}= \frac{2 {sec}^{2}\theta }{ {tan}^{2}\theta - 1 } \\ \\ hence \: proved \\ \\\end{gathered}
=
tan
2
θ−1
2sec
2
θ
hence proved
Hope it helps you.
Step-by-step explanation: