Math, asked by nitupande1985, 1 month ago

(sin theta + cos theta )square = 2 ÷ cosec theta × sec theta​

Answers

Answered by NITESH761
0

Step-by-step explanation:

We have,

\rm (\sin θ + \cos θ)^2 = \dfrac{2}{\cosec θ× \sec θ}

In LHS we have,

\rm (\sin θ + \cos θ)^2

By using,

\boxed{ \rm (a+b)^2= a^2+b^2+2ab}

\rm \implies \sin ^2 θ + \cos ^2 θ +2 \sin θ × \cos θ

We know that,

\boxed{\rm \sin ^2 θ + \cos ^2 θ =1}

\rm \implies 1+ 2 \sin θ × \cos θ

In RHS we have,

\rm \dfrac{2}{\cosec θ × \sec θ}

We know that,

\boxed{  \:  \:  \: \cosec θ = \dfrac{1}{\sin θ} \:  \:  \: }

and,

\boxed{  \:  \:  \: \sec θ = \dfrac{1}{\cos θ} \:  \:  \: }

\rm \implies \dfrac{2}{\dfrac{1}{\sin θ}× \dfrac{1}{\cos θ}}

\rm \implies \dfrac{2}{\dfrac{1}{\sin θ× \cos θ}}

\rm \implies 2 \sin θ ×\cos θ

LHS = RHS

Similar questions