Math, asked by teja14, 1 year ago

(sin theta + cos theta whole square )is equals to

Answers

Answered by mysticd
18

Answer:

(sin\theta+cos\theta)^{2}

=1+sin2\theta

Step-by-step explanation:

Given (sin\theta+cos\theta)^{2}

= sin^{2}\theta+cos^{2}\theta+2sin\theta \times cos\theta

/*By algebraic identity:

\boxed {a^{2}+b^{2}+2ab=(a+b)^{2}}*/

=1+2sin\theta \times cos\theta

/* By Trigonometric identity:

\boxed {sin^{2}\theta+cos^{2}\theta = 1}

= 1+sin2\theta

\* Since ,

\boxed {2sin\theta\times cos\theta = sin2\theta }*/

Therefore,

(sin\theta+cos\theta)^{2}

=1+sin2\theta

••♪

Answered by Anonymous
6

Answer:

(sin theta+ cos theta)^2

= sin ^2 theta + cos ^2 theta

+ 2 sin theta cos theta

= 1+ sin 2 theta.

one more question for u

If \: tan \theta \: + \frac{1}{tan\theta} = 2\\ find: \\ (1)sin\theta + cos\theta \\ (2)sec\theta + tan\theta

Similar questions