sin theta +cos theta=x then find the value of sin theta ×cos theta
Answers
Answered by
2
Answer:
sinθ+cosθ=x
⇒sin
2
θ+cos
2
θ+2sinθcosθ=x
⇒1+2sinθcosθ=x
⇒sinθcosθ=(x−
2
1
)
sin
6
θ+cos
6
θ=(sin
2
θ)
3
+(cos
2
θ)
3
=(sin
2
θ+cos
2
θ)(sin
4
θ+cos
4
θ−sin
2
θcos
2
θ)
=((sin
2
θ+cos
2
θ)
2
−2sin
2
θcos
2
θ−sin
2
θcos
2
θ)=1−3sin
2
θcos
2
θ
=1−
4
3(x−1)
2
=
4
4−3(x−1)
2
.
Similar questions
Science,
2 months ago
Math,
2 months ago
Math,
2 months ago
Business Studies,
4 months ago
Chemistry,
10 months ago