Math, asked by siri387, 4 months ago

sin theta +cos theta=x then find the value of sin theta ×cos theta​

Answers

Answered by sehajsekhon190
2

Answer:

sinθ+cosθ=x

⇒sin

2

θ+cos

2

θ+2sinθcosθ=x

⇒1+2sinθcosθ=x

⇒sinθcosθ=(x−

2

1

)

sin

6

θ+cos

6

θ=(sin

2

θ)

3

+(cos

2

θ)

3

=(sin

2

θ+cos

2

θ)(sin

4

θ+cos

4

θ−sin

2

θcos

2

θ)

=((sin

2

θ+cos

2

θ)

2

−2sin

2

θcos

2

θ−sin

2

θcos

2

θ)=1−3sin

2

θcos

2

θ

=1−

4

3(x−1)

2

=

4

4−3(x−1)

2

.

Similar questions