sin theta +cosec theta=1;coseccube theta +sincube theta=
Answers
Answer:-
Given:-
sin θ + cosec θ = 1 -- equation (1)
Cubing both sides we get,
⟹ (sin θ + cosec θ)³ = (1)³
Using (a + b)³ = a³ + b³ + 3ab(a + b) we get,
⟹ sin³ θ + cosec³ θ + 3 sin θ cosec θ (sin θ + cosec θ) = 1 [ ∵ 1³ = 1 ]
using cosec θ = 1/sin θ and sin θ + cosec θ = 1 [ from (1) ] we get,
⟹ sin³ θ + cosec³ θ + 3 sin θ (1/sin θ) (1) = 1
⟹ sin³ θ + cosec³ θ + 3(1) = 1
⟹ sin³ θ + cosec³ θ = 1 - 3
⟹ sin³ θ + cosec³ θ = - 2
∴ The value of sin³ θ + cosec³ θ is (- 2).
Answer:
Given:-
- sin θ + cosec θ = 1 ____ {1}
To Find:-
- cosec³ θ + sin³ θ
Identity Used:-
- a³ + b³ = (a + b) (a² - ab + b²)
- (a + b)² = a² + b² + 2ab
Solution:-
sin θ + cosec θ = 1
Squaring both side,
(sin θ + cosec θ)² = 1²
Using identity (a + b)² = a² + b² + 2ab
⇒ sin² θ + cosec² θ + 2sinθ cosecθ = 1
⇒ sin² θ + cosec² θ = 1 - 2
⇒ sin² θ + cosec² θ = -1 ____ {2}
Now, using identity,
a³ + b³ = (a + b) (a² - ab + b²) in {1}
⇒ sin³ θ + cosec³ θ = (sin θ + cosec θ) (sin² θ - sin θ cosec θ + cosec² θ)
⇒ sin³ θ + cosec³ θ = 1 (sin² θ + cosec² θ -1 ) {from 1}
⇒ sin³ θ + cosec³ θ = 1 × (-1 - 1) {from 2}
⇒ sin³ θ + cosec³ θ = 1 × (-2)
⇒ sin³ θ + cosec³ θ = -2
Hence, the value of sin³ θ + cosec³ θ is -2.
━━━━━━━━━━━━━━━━━━